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Abstract. The paper investigates the distributed estimation problem under low data rate com-4
munications. Based on the signal-comparison (SC) consensus protocol under binary-valued commu-5
nications, a new consensus+innovations type distributed estimation algorithm is proposed. Firstly,6
the high-dimensional estimates are compressed into binary-valued messages by using a periodic com-7
pressive strategy, dithering noises and a sign function. Next, based on the dithering noises and8
expanding triggering thresholds, a new stochastic event-triggered mechanism is proposed to reduce9
the communication frequency. Then, a modified SC consensus protocol is applied to fuse the neigh-10
borhood information. Finally, a stochastic approximation estimation algorithm is used to process11
innovations. The proposed SC-based algorithm has the advantages of high effectiveness and low12
communication cost. For the effectiveness, the estimates of the SC-based algorithm converge to the13
true value in the almost sure and mean square sense, and a polynomial almost sure convergence14
rate is also obtained. For the communication cost, the local and global average data rates decay15
to zero at a polynomial rate. The trade-off between the convergence rate and the communication16
cost is established through event-triggered coefficients. A better convergence rate can be achieved by17
decreasing event-triggered coefficients, while lower communication cost can be achieved by increasing18
event-triggered coefficients. A simulation example is given to demonstrate the theoretical results.19
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1. Introduction. Distributed estimation is of great practical significance in23

many practical fields, such as electric power grid [11] and cognitive radio systems24

[24], and therefore has been being an attractive topic [7, 12, 23, 30]. In the distrib-25

uted estimation problem, the subsystem of each sensor is not necessarily observable.26

Therefore, communications between sensors are required to fuse the observations of27

the distributed sensors, which brings communication cost problems. Firstly, due to28

the bandwidth limitations in the real digital networks, high data rate communications29

may cause network congestion. Secondly, the transmission energy cost is positively30

correlated with the bit numbers of communication messages [16]. Therefore, it is31
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important to propose a distributed estimation algorithm under low data rate commu-32

nications.33

There have been many works in quantization methods to reduce the communica-34

tion cost for distributed algorithms [2, 3, 4, 13, 39, 40], many of which are based on35

infinity level quantizers. For example, Aysal et al. adopt infinite level probabilistic36

quantizers to construct a quantized consensus algorithm [2]. Furthermore, Carli et al.37

[3, 4] propose an important technique based on infinite level logarithm quantizers to38

give quantized coordination algorithms and a quantized average consensus algorithm.39

Kar and Moura [13] appear to be the first to consider distributed estimation under40

quantized communications. They improve the probabilistic quantizer-based consensus41

algorithm in [2] by using the stochastic approximation method. Based on the tech-42

nique, the estimates of corresponding consensus+innovations distributed estimation43

algorithm converge to the true value. Besides, when there is only one observation44

for each sensor, Zhu et al. [39, 40] propose running average distributed estimation45

algorithms based on probabilistic quantizers.46

Due to the data rate limitations in real digital networks, distributed algorithms47

under finite data rate communications are developed. This is a challenging task48

because information contained in the interactive messages is limited. To solve the49

difficulty, Li et al. [17], Liu et al. [18], and Meng et al. [20] design zooming-in50

methods for the consensus problems under finite data rate communications. The51

methods are effective to deal with the quantization error. When communication noises52

exist, Zhao et al. [38] and Wang et al. [32] propose an empirical measurement-based53

consensus algorithm and a recursive projection consensus algorithm under binary-54

valued communications, respectively.55

Distributed estimation under finite data rate communications has also been ex-56

tensively investigated [5, 15, 21, 22, 25, 35]. Xie and Li [35] design finite level dynam-57

ical quantization method for distributed least mean square estimation under finite58

data rate communications. Sayin and Kozat [25] propose a single bit diffusion al-59

gorithm, which requires least data rate among existing works. Assuming that the60

Euclidean norm of messages can be transmitted with high precision, Carpentiero et61

al. [5] and Lao et al. [15] apply the quantizer in [1] and propose adapt-compress-then-62

combine diffusion algorithm and quantized adapt-then-combine diffusion algorithm,63

respectively. The estimates of these algorithms are all mean square bounded, but64

the almost sure and mean square convergence is not achieved. Additionally, the65

offline distributed estimation problem under finite data rate can be modelled as a66

distributed learning problem, which is solved by Michelusi et al. [21] and Nassif et67

al. [22]. However, under finite data rate communications, how to design an online68

distributed estimation algorithm with estimation errors converging to zero is still an69

open problem.70

Despite the remarkable progress in distributed estimation under finite data rate71

communications [5, 15, 25, 35], we propose a novel distributed estimation with better72

effectiveness and lower communication cost. For the effectiveness, the estimates of73

the algorithm converge to the true value. For the communication cost, the average74

data rates decay to zero.75

Both of the two issues are challenging. For the effectiveness, the main difficulty76

lies in the selection of consensus protocols to fuse the neighborhood information.77

Note that consensus protocol is an important part for both the consensus+innovation78

type distributed estimation algorithms and the diffusion type distributed estimation79

algorithms. A proper selection of consensus protocols can solve many communication80

problems in distributed estimation, including the communication cost problem. Under81
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finite data rate communications, there have been many consensus protocols [17, 18,82

20, 32, 38], but many of them have limitations when applied to distributed estimation.83

For example, the consensus protocol in [38] requires the states to keep constant in most84

of the times, which results in a relatively poor effectiveness. Besides, the consensus85

protocols in [17, 18, 20, 32] are proved to achieve consensus only when all the states86

are located in known compact sets. This limits their application in the distributed87

estimation problem due to the randomness of measurements and the lack of a priori88

information on the location of unknown parameter.89

The limitations can be overcome by using the signal-comparison (SC) consensus90

protocol that we [14] propose recently. Firstly, the convergence analysis of the SC91

protocol does not require that all the states are located in known compact sets. Sec-92

ondly, the SC protocol updates the states at every moment, and therefore achieves a93

better convergence rate compared with [38]. Hence, the SC protocol is suitable to be94

applied in the distributed estimation.95

For the communication cost, if information is transmitted at every moment, the96

minimum data rate is 1. Therefore, the communication frequency should be reduced97

to achieve a average data rate that decay to zero. The event-triggered strategy is98

an important method to reduce communication frequency, and is widely applied99

in consensus control [27, 34], distributed Nash equilibrium [28] and impulsive syn-100

chronization [33]. For the distributed estimation problem, He et al. [10] propose101

an event-triggered algorithm where the communication rate can decay to zero at a102

polynomial rate. However, the mechanism requires accurate transmission of local103

estimates, making it difficult to extend to the quantized communication case. There-104

fore, it is important to propose a new event-triggered mechanism for the distributed105

estimation under quantized communications.106

For the distributed estimation problem under quantized communications, we pro-107

pose a new stochastic event-triggered mechanism, which consists of dithering noises108

and expanding triggering thresholds. The mechanism is suitable for the quantized109

communication case, because it regards whether the information is transmitted as110

part of quantized information.111

Based on the SC consensus protocol and the stochastic event-triggered mecha-112

nism, we construct the SC-based distributed estimation algorithm. The main contri-113

butions are summarized as follows.114

1. For the effectiveness, the estimates of the SC-based algorithm converge to the115

true value in the almost sure and mean square sense. A polynomial almost116

sure convergence rate is obtained for the SC-based algorithm. Under finite117

data rate communications, the SC-based distributed estimation algorithm is118

the first to achieve convergence. Moreover, it is the first to characterize the119

almost sure properties of a distributed estimation algorithm under finite data120

rate communications.121

2. For the communication cost, the average data rates of the SC-based algorithm122

decay to zero almost surely. The upper bounds of local average data rates are123

estimated, and both the local and global average data rates converge to zero124

at a polynomial rate. The SC-based algorithm requires the least average data125

rates among existing works for distributed estimation [13, 21, 22, 25, 35].126

3. The trade-off between the convergence rate and the communication cost is127

established via event-triggered coefficients. A better convergence rate can be128

achieved by decreasing event-triggered coefficients, while a lower communi-129

cation cost can be achieved by increasing event-triggered coefficients. The130

operator of each sensor can decide its own preference on the trade-off by131
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selecting the event-triggered coefficients of adjacent communication channels.132

The remainder of the paper is organized as follows. Section 2 formulates the133

problem. Section 3 introduces the SC consensus protocol and proposes the SC-based134

distributed estimation algorithm. Section 4 analyzes the convergence properties of135

the algorithm. Section 5 calculates the average data rates of the SC-based algorithm136

to measure the communication cost. Section 6 discusses the trade-off between the137

convergence rate and the communication cost for the algorithm. Section 7 gives a138

simulation example to demonstrate the theoretical results. Section 8 concludes the139

paper.140

Notation. In the rest of the paper, N, R, Rn, and Rn×m are the sets of natural141

numbers, real numbers, n-dimensional real vectors, and n ×m-dimensional real ma-142

trices, respectively. ∥x∥ is the Euclidean norm for vector x, and ∥A∥ is the induced143

matrix norm for matrix A. Besides, ∥x∥1 is the L1 norm. In is an n× n identity ma-144

trix. 1n is the n-dimensional vector whose elements are all ones. diag{·} denotes the145

block matrix formed in a diagonal manner of the corresponding numbers or matrices.146

col{·} denotes the column vector stacked by the corresponding numbers or vectors. ⊗147

denotes the Kronecker product. Given two series {ak} and {bk}, ak = O(bk) means148

that ak = ckbk for a bounded ck, and ak = o(bk) means that ak = ckbk for a ck that149

converges to 0.150

2. Problem formulation. This section introduces the graph preliminaries and151

formulates the distributed estimation problem under decaying average data rate com-152

munications.153

2.1. Graph preliminaries. In this paper, the communications between sensors154

can be described by an undirected weighted graph G = (V, E ,A). V = {1, . . . , N} is155

the set of the sensors. E = {(i, j) : i, j ∈ V} is the edge set. (i, j) ∈ E if and only156

if the sensor i and the sensor j can communicate with each other. A = (aij)N×N157

represents the symmetric weighted adjacency matrix of the graph whose elements are158

all non-negative. aij > 0 if and only if (i, j) ∈ E . Besides, Ni = {j : (i, j) ∈ E} is159

used to denote the sensor i’s the neighbor set. Define Laplacian matrix as L = D−A,160

where D = diag
(∑

i∈N1
ai1, . . . ,

∑
i∈NN aiN

)
. The graph G is said to be connected if161

rank(L) = N − 1.162

2.2. Problem statement. Consider a network G = (V, E ,A) with N sensors.163

The sensor i observes the unknown parameter θ ∈ Rn from the observation model164

yi,k = Hi,kθ + wi,k,165166

where k is the time index, Hi,k ∈ Rmi×n is the measurement matrix, wi,k ∈ Rmi is the167

observation noise, and yi,k ∈ Rmi is the observation. Define σ-algebra Fw
k = σ({wi,t :168

i ∈ V, 1 ≤ t ≤ k}).169

The assumptions of the observation model are given as below.170

Assumption 2.1. There exists H̄ > 0 such that ∥Hi,k∥ ≤ H̄ for all k ≥ 1 and171

i = 1, . . . , N . There exists a positive integer p and a positive real number δ such that172

(2.1)
1

p

k+p−1∑
t=k

N∑
i=1

H⊤
i,tHi,t ≥ δIn, k ≥ 1.173

Remark 2.2. The condition (2.1) is the cooperative persistent excitation condi-174

tion, and is common in existing literature for distributed estimation. For example,175
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[12, 23] assumes that Hi,k is constant for all k and 1
N

∑N
i=1H

⊤
i,kΣ

−1
w Hi,k is invertible,176

where Σw is the nonsingular covariance of wi,k. This condition is a special case for177

Assumption 2.1.178

Assumption 2.3. {wi,k,Fk} is a martingale difference sequence such that179

(2.2) sup
i∈V, k∈N

E
[
∥wi,k∥ρ

∣∣Fw
k−1

]
<∞, a.s.180

for some ρ > 2.181

Remark 2.4. wi,k and wj,k is allowed to be correlated for i ̸= j, which makes our182

model applicable to more practical scenarios, such as the distributed target localiza-183

tion [13].184

Assumption 2.5. The communication graph G is connected.185

The goal of this paper is to cooperatively estimate the unknown parameter θ.186

Cooperative estimation requires information exchange between sensors, which brings187

communication cost. We use the average data rates to describe the communication188

cost of the distributed estimation.189

Definition 2.6. Given time interval [1, k]∩N, the local average data rate for the190

communication channel where the sensor i sends messages to the neighbor j191

(2.3) Bij(k) =

∑k
t=1 ζij(t)

k
,192

where ζij(t) is the bit number of the message that the sensor i sends to the sensor j193

at time t. The global average data rate of communication is194

B(k) =

∑
(i,j)∈E

∑k
t=1 ζij(t)

2kM
,195

196

where M is the edge number of the communication graph.197

Remark 2.7. From Definition 2.6, one can get B(k) =
∑

(i,j)∈E Bij(k)

2M .198

Remark 2.8. The average data rates are used to describe the communication cost199

because they can represent the consumption of bandwidth, and are also related to200

transmission energy cost [16].201

There have been distributed estimation algorithms with B(k) <∞. For example,202

B(k) of the distributed least mean square algorithm with 2K + 1 level dynamical203

quantizer in [35] is n⌈log2(2K + 1)⌉, where ⌈·⌉ is the minimum integer that is no204

smaller than the given number. B(k) of the single-bit diffusion algorithm in [25] is 1.205

For effectiveness, these algorithms are shown to be mean square stable [25, 35].206

Here, we propose a new distributed estimation algorithm with better effectiveness207

and lower communication cost. For the effectiveness, the estimation errors converge to208

zero at a polynomial rate. For the communication cost, Bij(k) for all communication209

channels (i, j) ∈ E and B(k) also converge to zero.210

3. Algorithm construction. The section constructs the distributed estimation211

algorithm under the consensus+innovations framework [13], where a consensus pro-212

tocol is necessary to fuse the messages transmitted in the network. Therefore, the213

SC consensus algorithm [14] is firstly introduced as the foundation of our distributed214

estimation algorithm.215
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3.1. The SC consensus protocol [14]. In [14], we consider the first order216

multi-agent system217

(3.1) xi,k = xi,k−1 + ui,k, ∀i = 1, . . . , N,218

where xi,k ∈ R is the agent i’s state, and ui,k ∈ R is the input to be designed. The219

SC consensus protocol for the system (3.1) is given as in Algorithm 3.1.220

Algorithm 3.1 The SC consensus protocol

Input: initial state sequence {xi,0}, threshold C, step-size sequence {αk}.
Output: state sequence {xi,k}.
for k = 1, 2, . . . , do
Encoding: The agent i generates the binary-valued message as

si,k =

{
1, if xi,k + di,k < C;

0, otherwise,

where di,k is the noise.
Consensus: The agent i receives the binary-valued messages sj,k for all j ∈ Ni,

and updates its states by

(3.2) xi,k = xi,k−1 + αk
∑
j∈Ni

aij (si,k−1 − sj,k−1) .

end for

The effectiveness of Algorithm 3.1 is analyzed in [14]. One of the main results is221

shown below.222

Theorem 3.1 (Theorem 1 of [14]). Assume that the communication graph is223

connected,
∑∞
k=1 αk = ∞,

∑∞
k=1 α

2
k < ∞, and the noise sequence {di,k} is indepen-224

dent and identically distributed (i.i.d.) with a strictly increasing distribution function225

F (·). Then, for Algorithm 3.1, we have limk→∞ xi,k = 1
N

∑N
j=1 xj,0 almost surely.226

Remark 3.2. Theorem 3.1 shows that Algorithm 3.1 can achieve the almost sure227

consensus. Therefore, Algorithm 3.1 can be used to solve the information transmission228

problem of distributed identification under binary-valued communications.229

Remark 3.3. The design idea of Algorithm 3.1 is based on the comparison of the230

binary-valued messages si,k and sj,k. If si,k − sj,k = 1, then si,k = 1 and sj,k = 0.231

From the distributions of si,k and sj,k, one can get that xi,k is more likely to be less232

than xj,k. Therefore, in Algorithm 3.1, xi,k increases, and xj,k decreases. Conversely,233

if si,k − sj,k = −1, then xi,k decreases, and xj,k increases.234

Remark 3.4. The noise di,k with strictly increasing distribution function is nec-235

essary for Algorithm 3.1. Without such a noise, the states xi,k will keep constant if236

all the states are greater (or smaller) than the threshold C, and hence, the consensus237

may not be achieved. With the noise di,k, E [si,k|xi,k] is strictly decreasing with xi,k.238

Therefore, when xi,k ̸= xj,k, the stochastic properties of si,k and sj,k are different239

even if xi,k and xj,k are all greater (or smaller) than the threshold C. The consensus240

can be thereby achieved.241
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3.2. The SC-based distributed estimation algorithm. The subsection pro-242

pose the SC-based distributed estimation algorithm in Algorithm 3.2.243

Algorithm 3.2 The SC-based distributed estimation algorithm.

Input: initial estimate sequence {θ̂i,0}, event-triggered coefficient sequence {νij}
with νij = νji ≥ 0, noise coefficient sequence {bij} with bij = bji > 0, step-size
sequences {αij,k} with αij,k = αji,k > 0 and {βi,k} with βi,k > 0.

Output: estimate sequence {θ̂i,k}.
for k = 1, 2, . . . , do
Compressing: If k = nq + l for some q ∈ N and l ∈ {1, . . . , n}, then the sensor

i generates φk as the n-dimensional vector whose l-th element is 1 and the others
are 0. The sensor i uses φk to compress the previous local estimate θ̂i,k−1 into the

scalar xi,k = φ⊤
k θ̂i,k−1.

Encoding: The sensor i generates the dithering noise di,k with Laplacian dis-
tribution Lap(0, 1). Then, the sensor i generates the binary-valued message for the
neighbor j

sij,k =

{
1, if xi,k + bijdi,k > 0;

−1, otherwise.

Data Transmission: Set Cij,k = νijbij ln k. If |xi,k + bijdi,k| > Cij,k, then the
sensor i sends the 1 bit message sij,k to the neighbor j. Otherwise, the sensor i
does not send any message to the neighbor j.
Data Receiving: If the sensor i receives 1 bit message sji,k from its neighbor

j, then set ŝji,k = sji,k. Otherwise, set ŝji,k = 0.
Information fusion: Apply the modified Algorithm 3.1 to fuse the neighbor-

hood information.

(3.3) θ̌i,k = θ̂i,k−1 + φk
∑
j∈Ni

αij,kaij (ŝji,k −Gij,k(xi,k))

whereGij,k(x) = F ((x−Cij,k)/bij)−F ((−x−Cij,k)/bij), and F (·) is the distribution
function of Lap(0, 1).
Estimate update: Use the observation yi,k to update the local estimate.

(3.4) θ̂i,k = θ̌i,k + βi,kH
⊤
i,k

(
yi,k −Hi,kθ̂i,k−1

)
.

end for

In Algorithm 3.2, dithering noise di,k is used for the encoding step and the event-244

triggered condition. The independence assumption for di,k is required.245

Assumption 3.5. di,k and dj,t are independent when k ̸= t or i ̸= j. And, di,k246

and wj,t are independent for all i, j ∈ V and k, t ∈ N.247

Following remarks are given for Algorithm 3.2.248

Remark 3.6. The requirement that αij,k = αji,k in Algorithm 3.2 is weak among249

existing literature. In the distributed estimation algorithms in [12, 13, 19, 30], it250

is required that αij,k = αi′j′,k for all (i, j), (i′, j′) ∈ E . He et al. [10] and Zhang251
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and Zhang [37] relax this condition, but still require that limk→∞
αij,k
αi′j′,k

= 1 for all252

(i, j), (i′, j′) ∈ E , and hence the step-sizes αij,k converge to 0 with the same order.253

For comparison, in Algorithm 3.2, αij,k = αi′j′,k is required only when i = j′ and254

j = i′, which is more easily implemented since it only requires the communication255

between adjacent sensors i and j, and the step-sizes αij,k in Algorithm 3.2 are allowed256

to converge to 0 with different orders. Here, we give one of the techniques to achieve257

αij,k = αji,k, which is a two-step protocol before running Algorithm 3.2. Firstly,258

the operators of the sensors i and j select positive numbers ᾱij,1, γ̄ij and ᾱji,1, γ̄ji,259

respectively, and then transmit the selected numbers to each other. Secondly, set260

αij,k = αji,k =
αij,1
kγij

, where αij,1 =
ᾱij,1+ᾱji,1

2 and γij =
γ̄ij+γ̄ji

2 . By using this261

technique, it requires only finite bits of communications to achieve αij,k = αji,k if262

m̄ᾱij,1, m̄γ̄ij , m̄ᾱji,1, m̄γ̄ji are all integers for some positive m̄. Similar techniques263

can be applied to achieve νij = νji and bij = bji in Algorithm 3.2.264

Remark 3.7. A new stochastic event-triggered mechanism is applied to Algo-265

rithm 3.2. The main idea is to use the dithering noises and the expanding triggering266

thresholds. When νij > 0, the threshold Cij,k goes to infinity. Hence, the probabil-267

ity that |xi,k + bijdi,k| > Cij,k decays to zero, which implies that the communication268

frequency is reduced.269

Remark 3.8. The stochastic event-triggered mechanism used in Algorithm 3.2 is270

significantly different from existing ones. When the information is not transmitted271

at a certain moment, the traditional event-triggered mechanisms [10] use the recently272

received message as an approximation of the untransmitted message. Note that in the273

binary-valued communication case, 1 and −1 represent opposite information. Then, in274

this case, approximation technique of [10] can only be used when the recently received275

message is the same as the untransmitted message. This constraint makes it difficult276

to reduce communication frequency to zero through event-triggered mechanisms. To277

overcome the difficulty, a new approximation method is used in Algorithm 3.2. When278

the information is not transmitted at a certain moment, our stochastic event-triggered279

mechanism uses 0 as an approximation of the untransmitted information. The approx-280

imation technique expands the binary-valued message sji,k to triple-valued message281

ŝji,k. The message ŝji,k contains information on whether sji,k is transmitted or not.282

Hence, the statistical properties of whether sji,k is transmitted can be better utilized.283

Remark 3.9. In Algorithm 3.2, the dithering noise di,k is artificial, and generated284

under a given distribution function. The necessity of introducing di,k is similar to285

that in Algorithm 3.1, which has been explained in Remark 3.4. For similar reasons,286

dithering noises are often used to avoid the influence of quantization error [2, 9, 31].287

Besides, in Algorithm 3.2, the dithering noise di,k is not necessarily Laplacian distrib-288

uted. di,k can be any other types with continuous and strictly increasing distribution289

F (·), including Gaussian noises and the heavy-tailed noises [19]. For the polynomial290

decaying rate of B(k), the triggering threshold Cij,k can be changed accordingly.291

Remark 3.10. In (3.3), we use Gij,k(xi,k) to replace ŝij,k in order to reduce292

the variances of the estimates, because E [ŝij,k|Fk−1] = Gij,k(xi,k), where Fk =293

σ({wi,t, di,t : i = 1, . . . , N, 1 ≤ t ≤ k}).294

4. Convergence analysis. The convergence properties of Algorithm 3.2 is an-295

alyzed in this section. The almost sure convergence and mean square convergence are296

obtained in Subsection 4.1. Then, the almost sure convergence rate is calculated in297

Subsection 4.2.298
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4.1. Convergence. This subsection focuses on the almost sure and mean square299

convergence of Algorithm 3.2. The following theorem gives a new step-size condition,300

where the step-sizes are allowed to converge to zero with different orders, and the301

estimates of Algorithm 3.2 are proved to converge to the true value almost surely.302

Theorem 4.1. Suppose the step-size sequences {αij,k} and {βi,k} satisfy303

i)
∑∞
k=1 α

2
ij,k <∞ and αij,k+1 = O (αij,k) for all (i, j) ∈ E;304

ii)
∑∞
k=1 β

2
i,k <∞ and βi,k+1 = O (βi,k) for all ∀i ∈ V;305

iii)
∑∞
k=1 zk = ∞ for zk = min

{αij,k
kνij

, (i, j) ∈ E ;βi,k, i ∈ V
}
.306

Then, under Assumptions 2.1, 2.3, 2.5, and 3.5, the estimate θ̂i,k in Algorithm 3.2307

converges to the true value θ almost surely.308

Proof. By E [ŝji,k|Fk−1] = Gji,k(xj,k), one can get309

E
[
(ŝji,k −Gji,k(xj,k−1))

2
∣∣∣Fk−1

]
(4.1)310

=E
[
ŝ2ji,k

∣∣Fk−1

]
−G2

ij,k(xj,k)311

=F ((xj,k − Cji,k)/bji) + F ((−xj,k − Cji,k)/bji)−G2
ji,k(xj,k),312313

where the σ-algebra Fk−1 is defined in Remark 3.10. Besides by the Lagrange mean314

value theorem [41], given (i, j) ∈ E , there exists ξij,k between xi,k and xj,k such that315

Gji,k(xj,k)−Gij,k(xi,k) = gij,k(ξij,k) (xj,k − xi,k) ,316317

where318

gij,k(x) = gji,k(x) =

(
f

(
x− Cij,k

bij

)
+ f

(
−x− Cij,k

bij

))/
bij ,319

320

and f(·) is the density function of Lap(0, 1). Denote θ̃i,k = θ̂i,k − θ. Then, it holds321

that322

E
[
∥θ̃i,k∥2

∣∣∣Fk−1

]
=∥θ̃i,k−1∥2 − 2βi,k

(
Hi,kθ̃i,k−1

)2
323

+ 2φ⊤
k θ̃i,k−1

∑
j∈Ni

αij,kaijgij,k(ξij,k) (xj,k − xi,k)324

+O

β2
i,k

(
∥θ̃i,k−1∥2 + 1

)
+
∑
j∈Ni

α2
ij,k

 .325

326

Denote x̃i,k = φ⊤
k θ̃i,k−1 = xi,k − φ⊤

k θ and X̃k = [x̃1,k, . . . , x̃N,k]
⊤. Then, one can get327

N∑
i=1

2φ⊤
k θ̃i,k−1

∑
j∈Ni

αij,kaijgij,k(ξij,k) (xj,k − xi,k)(4.2)328

=

N∑
i=1

2x̃i,k
∑
j∈Ni

αij,kaijgij,k(ξij,k) (x̃j,k − x̃i,k) = −2X̃⊤k LG,kX̃k,329

330

where LG,k = (lGij,k)N×N is a Laplacian matrix with lGii,k =
∑
j∈Ni αij,kaijgij,k(ξij,k)331
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and lGij,k = −αij,kaijgij,k(ξij,k) for i ̸= j. Therefore, we have332

E

[
N∑
i=1

∥θ̃i,k∥2
∣∣∣∣∣Fk−1

]
=

N∑
i=1

∥θ̃i,k−1∥2 − 2

N∑
i=1

βi,k

(
Hi,kθ̃i,k−1

)2
− 2X̃⊤k LG,kX̃k(4.3)333

+O

 N∑
i=1

β2
i,k

(
∥θ̃i,k−1∥2 + 1

)
+
∑

(i,j)∈E

α2
ij,k

 .334

335

Then, by Theorem 1.3.2 of [8],
∑N
i=1∥θ̃i,k∥2 converges to a finite value almost surely,336

and337

(4.4)

∞∑
k=1

(
N∑
i=1

βi,k

(
Hi,kθ̃i,k−1

)2
+ X̃⊤k LG,kX̃k

)
<∞, a.s.,338

By the convergence of
∑N
i=1∥θ̃i,k∥2, x̃i,k = φ⊤

k θ̃i,k is uniformly bounded almost339

surely. Then, by Lemma A.1 in Appendix A, it holds that340

(4.5) g := inf
(i,j)∈E,k∈N

kνijgij,k(ξij,k) > 0, a.s.341

Hence, one can get342

(4.6) LG,k ≥
(

min
(i,j)∈E

αij,k
kνij

)
gλ2(L) (IN − JN ) ,343

where λ2(L) is the second smallest eigenvalue of L, and JN = 1
N 1⊤

N1N .344

Denote345

Θ̃k = col{θ̃1,k, . . . , θ̃N,k}, Hk = diag{H⊤
1,kH1,k, . . . ,H

⊤
N,kHN,k},346

Hβ,k = diag{β1,kH⊤
1,kH1,k, . . . , βN,kH

⊤
N,kHN,k},347

Φk = Hk + gλ2(L) (IN − JN )⊗ φkφ
⊤
k ,348

Wk = col{β1,kH⊤
1,kw1,k, . . . , βN,kH

⊤
N,kwN,k},349

+


φk ∑

j∈N1

α1j,ka1j(ŝj1,k −Gj1,k(xj,k))

⊤

, . . . ,350

φk ∑
j∈NN

αNj,kaNjaNj(ŝjN,k −GjN,k(xj,k))

⊤

⊤

.351

352

Then, Wk is Fk-measurable, and353

Θ̃k =
(
IN×n −Hβ,k − LG,k ⊗ φkφ

⊤
k

)
Θ̃k−1 + Wk,(4.7)354

E [Wk|Fk−1] = 0, E
[
∥Wk∥2

∣∣Fk−1

]
= O

 N∑
i=1

β2
i,k +

∑
(i,j)∈E

α2
ij,k

 .355

356

By the almost sure uniform boundedness of Θ̃k and (4.7), one can get357

Pk :=
Θ̃k − Θ̃k−1 − Wk∑N

i=1 βi,k +
∑

(i,j)∈E αij,k
(4.8)358

359
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is Fk−1-measurable and almost surely uniformly bounded. By (4.6), it holds that360

N∑
i=1

βi,k

(
Hi,kθ̃i,k−1

)2
+ X̃⊤k LG,kX̃k ≥ zkΘ̃

⊤
k ΦkΘ̃k.(4.9)361

362

Besides by Lemma 5.4 of [36], there exists H > 0 almost surely such that363

k∑
t=k−np+1

Φt =

k∑
t=k−np+1

Ht + gλ2(L)p (IN − JN )⊗ In ≥ H.(4.10)364

365

By (4.8), one can get366

npr+np∑
t=npr+1

ztΘ̃
⊤
pr+pΦtΘ̃npr+np −

npr+np∑
t=npr+1

ztΘ̃
⊤
t ΦtΘ̃t(4.11)367

=

npr+np∑
t=npr+1

zt

npr+np∑
l=t+1

(
Θ̃⊤
l ΦtΘ̃l − Θ̃⊤

l−1ΦtΘ̃l−1

)
368

=

npr+np∑
t=npr+1

zt

npr+np∑
l=t+1

(
2W⊤l ΦtΘ̃l−1 + W⊤l ΦtWl

)
369

+O

 npr+np∑
t=npr+1

zt

npr+np∑
l=t+1

N∑
i=1

βi,l +

npr+np∑
l=t+1

∑
(i,j)∈E

αij,l

370

+

npr+np∑
t=npr+1

2zt

npr+np∑
l=t+1

N∑
i=1

βi,lW
⊤
l ΦtPl +

npr+np∑
l=t+1

∑
(i,j)∈E

αij,lW
⊤
l ΦtPl

 , a.s.371

372

By
∑∞
k=1 α

2
ij,k <∞ and

∑∞
k=1 β

2
i,k <∞, we have373

∞∑
r=1

npr+np∑
t=npr+1

zt

npr+np∑
l=t+1

N∑
i=1

βi,l +

npr+np∑
l=t+1

∑
(i,j)∈E

αij,l

 <∞.374

375

By Theorem 1.3.10 of [8], one can get376

∞∑
r=1

npr+np∑
t=npr+1

npr+np∑
l=t+1

2ztW
⊤
l ΦtΘ̃l−1 <∞, a.s.,377

∞∑
r=1

npr+np∑
t=npr+1

npr+np∑
l=t+1

2zt

 N∑
i=1

βi,lW
⊤
l ΦtPl +

∑
(i,j)∈E

αij,lW
⊤
l ΦtPl

 <∞, a.s.378

379

By Theorem 1.3.9 of [8] with α = 1, we have380

∞∑
r=1

npr+np∑
t=npr+1

npr+np∑
l=t+1

ztE∥Wl∥2 ·
1

E∥Wl∥2
(
W⊤l ΦtWl − E

[
W⊤l ΦtWl

∣∣Fl−1

])
<∞, a.s.381

382

Besides, E
[
W⊤l ΦtWl

∣∣Fl−1

]
= O

((∑N
i=1 βi,l +

∑
(i,j)∈E αij,l

)2)
almost surely. Then,383

∞∑
r=1

npr+np∑
t=npr+1

zt

npr+np∑
l=t+1

E
[
W⊤l ΦtWl

∣∣Fl−1

]
<∞, a.s.384

385
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Therefore by (4.4), (4.9)-(4.11), we have386

H

∞∑
r=1

(
min

npr+1≤t≤npr+np
zt

)
∥Θ̃npr+np∥2387

≤
∞∑
r=1

(
min

npr+1≤t≤npr+np
zt

)
Θ̃⊤
npr+np

(
npr+np∑
t=npr+1

Φt

)
Θ̃npr+np388

≤
∞∑
r=1

npr+np∑
t=npr+1

ztΘ̃
⊤
npr+npΦtΘ̃npr+np =

∞∑
k=1

zkΘ̃
⊤
k ΦkΘ̃k +O(1)389

≤
∞∑
k=1

(
N∑
i=1

βi,k

(
Hi,kθ̃i,k−1

)2
+ X̃⊤k LG,kX̃k

)
+O(1) <∞, a.s.390

391

Then, by Lemma A.2 in Appendix A, there exist k1 < k2 < · · · such that lim
t→∞

∥Θ̃kt∥2392

= 0 almost surely. Note that
∑N
i=1∥θ̃i,k∥2 = ∥Θ̃k∥2 converges to a finite value. Then,393

the value is 0, which proves the theorem.394

Remark 4.2. The estimates of Algorithm 3.2 can converge to the true value be-395

cause the algorithm is designed by using the idea of stochastic approximation [6]. In396

Algorithm 3.2, ŝji,k − Gij,k(xi,k) = Gij,k(xj,k) − Gij,k(xi,k) + ŝji,k − Gij,k(xj,k) and397

yi,k−Hi,kθ̂i,k−1 = −Hi,kθ̃i,k−1+wi,k, where ŝji,k−Gij,k(xj,k) and wi,k are martingale398

difference with bounded variance, and399

Gij,k(φ
⊤
k θ̂j)−Gij,k(φ

⊤
k θ̂i) = 0, ∀(i, j) ∈ E , k ∈ N; Hi,k(θ̂i − θ) = 0,∀i ∈ V, k ∈ N400401

holds if and only if θ̂i = θ for all i. Besides, under i) and ii) of Theorem 4.1, the step-402

sizes converge to 0. These algorithm characteristics based on stochastic approximation403

enable the estimates to converge to the true value [6].404

Remark 4.3. If αij,k and βi,k are all polynomial, iii) of Theorem 4.1 is equivalent405

to
∑∞
k=1

αij,k
kνij

= ∞ for all (i, j) ∈ E and
∑∞
k=1 βi,k = ∞ for all i ∈ V. Under this406

case, the step-sizes can be designed in a distributed manner.407

Remark 4.4. Note that 2
∑k
t=1

αij,k
kνij

≤
∑k
t=1 α

2
ij,k+

∑k
t=1

1
k2νij

. Then, the condi-408

tions i) and iii) imply νij ≤ 1
2 . Especially, if αij,k is polynomial, then νij <

1
2 .409

The following theorem proves the mean square convergence of Algorithm 3.2.410

Theorem 4.5. Under the condition of Theorem 4.1, the estimate θ̂i,k in Algo-411

rithm 3.2 converges to the true value θ in the mean square sense.412

Proof. Since we have proved the almost sure convergence of Algorithm 3.2, by413

Theorem 2.6.4 of [26], it suffices to prove the uniform integrability of the algorithm.414

Here, we continue to use the notations of LG,k, Θ̃k, Hβ,k, and Wk in the proof of415

Theorem 4.1.416

Denote Ak = IN×n −Hβ,k − LG,k ⊗φkφ
⊤
k . When k is sufficiently large, ∥Ak∥ ≤ 1.417

Then, by (4.7),418

E∥Θ̃k∥2 ln
(
1 + ∥Θ̃k∥2

)
(4.12)419

≤ E
(
∥Θ̃k−1∥2 + 2W⊤k AkΘ̃k−1 + ∥Wk∥2

)
ln
(
1 + ∥Θ̃k−1∥2 + 2W⊤k AkΘ̃k−1 + ∥Wk∥2

)
.420

421
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By b) of Lemma A.3 in Appendix A,422

E∥Θ̃k−1∥2 ln
(
1 + ∥Θ̃k−1∥2 + 2W⊤k AkΘ̃k−1 + ∥Wk∥2

)
(4.13)423

≤E∥Θ̃k−1∥2 ln
(
1 + ∥Θ̃k−1∥2

)
+ E

∥Θ̃k−1∥2

1 + ∥Θ̃k−1∥2
(
2W⊤k AkΘ̃k−1 + ∥Wk∥2

)
424

≤E∥Θ̃k−1∥2 ln
(
1 + ∥Θ̃k−1∥2

)
+ E∥Θ̃k−1∥2E∥Wk∥2.425

426

By a), c) and d) of Lemma A.3 in Appendix A,427

E2W⊤k AkΘ̃k−1 ln
(
1 + ∥Θ̃k−1∥2 + 2W⊤k AkΘ̃k−1 + ∥Wk∥2

)
(4.14)428

≤E2W⊤k AkΘ̃k−1 ln
(
1 + ∥Θ̃k−1∥2 + ∥Wk∥2

)
+ E

(
2W⊤k AkΘ̃k−1

)2
429

≤E2W⊤k AkΘ̃k−1 ln
(
1 + ∥Θ̃k−1∥2

)
+ 4E∥Wk∥2E∥Θ̃k−1∥2430

+ E2|W⊤k AkΘ̃k−1|
(
ln
(
1 + ∥Θ̃k−1∥2 + ∥Wk∥2

)
− ln

(
1 + ∥Θ̃k−1∥2

))
431

≤E2∥Wk∥∥Θ̃k−1∥ ln
(
1 + ∥Wk∥2

)
+ 4E∥Θ̃k−1∥2E∥Wk∥2432

≤O
(
E∥Θ̃k−1∥E∥Wk∥2

)
+ 4E∥Θ̃k−1∥2E∥Wk∥2.433

434

By a) and d) of Lemma A.3 in Appendix A,435

E∥Wk∥2 ln
(
1 + ∥Θ̃k−1∥2 + 2W⊤k AkΘ̃k−1 + ∥Wk∥2

)
(4.15)436

≤E∥Wk∥2 ln
(
1 + 2∥Θ̃k−1∥2 + 2∥Wk∥2

)
437

≤E∥Wk∥2 ln
(
1 + 2∥Θ̃k−1∥2

)
+ E∥Wk∥2 ln

(
1 + 2∥Wk∥2

)
438

≤2E∥Θ̃k−1∥2E∥Wk∥2 +O
(
E∥Wk∥min{ρ,4}

)
,439

440

where ρ is given in Assumption 2.3. Taken the expectation over (4.3), we have441

E∥Θ̃k∥2 is uniformly bounded. By Lyapunov inequality [26], one can get E∥Θ̃k∥442

is also uniformly bounded. Besides, E∥Wk∥2 = O
((∑N

i=1 β
2
i,k +

∑
(i,j)∈E α

2
ij,k

))
, and443

E∥Wk∥min{ρ,4} = O
((∑N

i=1 β
min{ρ,4}
i,k +

∑
(i,j)∈E α

min{ρ,4}
ij,k

))
. Hence, (4.12)-(4.15) im-444

ply that E∥Θ̃k∥2 ln
(
1 + ∥Θ̃k∥2

)
is uniformly bounded. Note that445

lim
x→∞

sup
k∈N

∫
{∥Θ̃k∥2>x}

∥Θ̃k∥2dP446

≤ lim
x→∞

sup
k∈N

1

ln(1 + x)

∫
{∥Θ̃k∥2>x}

∥Θ̃k∥2 ln
(
1 + ∥Θ̃k∥2

)
dP447

≤ lim
x→∞

sup
k∈N

1

ln(1 + x)
E∥Θ̃k∥2 ln

(
1 + ∥Θ̃k∥2

)
= 0.448

449

Then, ∥Θ̃k∥2 is uniformly integrable. Hence, the theorem can be proved by Theorem450

2.6.4 of [26] and Theorem 4.1.451

Remark 4.6. If (2.2) holds for any ρ > 0, then similar to Theorem 4.5, we can452

prove the Lr convergence of Algorithm 3.2 for any positive integer r.453
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Remark 4.7. Under finite data rate, existing literature [25, 35] focuses on the454

mean square stability in terms of effectiveness, and gives the upper bounds of the455

mean square estimation errors for corresponding algorithms. There are two impor-456

tant breakthroughs in Theorems 4.1 and 4.5. Firstly, Theorem 4.5 shows that our457

algorithm can not only achieve mean square stability, but also can achieve mean458

square convergence. The mean square estimation errors of our algorithm can con-459

verge to zero. Secondly, Theorem 4.1 shows that the estimates of our algorithm can460

converge not only in the mean square sense, but also in the almost sure sense. The461

almost sure convergence property can better describe the characteristics of a single462

trajectory. When using our algorithm, there is no need to worry about the small463

probability event that the estimation errors do not converge to zero, as it will not464

occur almost surely.465

4.2. Convergence rate. To quantitatively demonstrate the effectiveness, the466

following theorem calculates the almost sure convergence rate of Algorithm 3.2.467

Theorem 4.8. In Algorithm 3.2, set αij,k =
αij,1
kγij

and βi,k =
βi,1
k with468

i) αij,1 = αji,1 > 0 for all (i, j) ∈ E, and βi,1 > 0 for all i ∈ V;469

ii) 1/2 < γij ≤ 1 and νij + γij ≤ 1 for all (i, j) ∈ E.470

Then, under Assumptions 2.1, 2.3, 2.5, and 3.5, the almost sure convergence rate of471

the estimation error for the sensor i is472

θ̃i,k =


O
(

1
ka

)
, if 2h− 2a > 1;

O
(

ln k
kh−1/2

)
, if 2h− 2a = 1;

O
( √

ln k
kh−1/2

)
, if 2h− 2a < 1,

a.s.,473

474

where h = min(i,j)∈E
(νij

2 + γij
)
, λ2(L) is defined in (4.6), E ′ = {(i, j) ∈ E : νij+γij =475

1}, and476

a =


δ(mini∈V βi,1)

N , if E ′ = ∅;

δλ2(L)(mini∈V βi,1)
(
min(i,j)∈E′ αij,1

exp(−∥θ∥1/bij)
bij

)
2NnH̄2(mini∈V βi,1)+Nλ2(L)

(
min(i,j)∈E′ αij,1

exp(−∥θ∥1/bij)
bij

) , if E ′ ̸= ∅.
477

478

Proof. The key of the proof is to use Lemma A.4 in Appendix A. Here, we continue479

to use the notations of LG,k, Θ̃k, Hk, Hβ,k, Φk, and Wk in the proof of Theorem 4.1.480

Under the step-sizes in this theorem, by (4.7), one can get481

Θ̃k =

(
IN×n − 1

k

(
kHβ,k + kLG,k ⊗ φkφ

⊤
k

))
Θ̃k−1 + Wk.(4.16)482

483

Since E
[
(ŝji,k −Gji,k(xj,k))

2
∣∣∣Fk−1

]
= O

(
1

kνij

)
almost surely, we have484

E
[
∥W∥2k

∣∣Fk−1

]
= O

(
1

k2
+

1

kmin(i,j)∈E(νij+2γij)

)
= O

(
1

k2h

)
, a.s.485

486

Besides by (4.5), one can get487

LG,k = O

(
1

kmin(i,j)∈E(νij+γij)

)
, a.s.488

489

Therefore, we have kHβ,k + kLG,k ⊗ φkφ
⊤
k = O

(
k1−min(i,j)∈E(νij+γij)

)
almost surely.490
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Firstly, we show that h ≤ min
{
1,

3+2h−2(1−min(i,j)∈E(νij+γij))

3

}
. Note that h =491

min(i,j)∈E
(νij

2 + γij
)
≤ min(i,j)∈E(νij + γij). Then, one can get h ≤ 1 and492

h <
1 + 4h

4
≤

3 + 2h− 2
(
1−min(i,j)∈E(νij + γij)

)
4

.493
494

Secondly, we estimate the lower bound of 1
np

∑k
t=k−np+1

(
tHβ,t + tLG,t ⊗ φtφ

⊤
t

)
.495

By (4.6) and (4.10), one can get496

k∑
t=k−np+1

(
tHβ,t + tLG,t ⊗ φtφ

⊤
t

)
≥ z1

k∑
t=k−np+1

Φt ≥ H > 0, a.s.,497

498

where z1 = min {αij,1, (i, j) ∈ E ;βi,1, i ∈ V}. Then, by Lemma A.4, Θ̃k = O
(

1
kψ

)
for499

some ψ > 0 almost surely. Hence, by the Lagrange mean value theorem [41] and500

Lemma A.1, we have gij(ξij,k)− gij(φ
⊤
k θ) = O

(
1

kνij+ψ

)
almost surely, which implies501

(4.17) gij(ξij,k)≥
exp

(
−|φ⊤

k θ|−Cij,k
bij

)
bij

+O

(
1

kνij+ψ

)
≥ e−∥θ∥1/bij

bijkνij
+O

(
1

kνij+ψ

)
, a.s.502

By Assumption 2.1, (4.17), and Lemma 5.4 of [36], it holds that503

k∑
t=k−np+1

(
tHβ,t + tLG,t ⊗ φtφ

⊤
t

)
(4.18)504

≥
k∑

t=k−np+1

(
tHβ,t +Rt (IN − JN )⊗ φtφ

⊤
t

)
505

≥
k∑

t=k−np+1

(
min
i∈V

βi,1

)
Ht +

(
min

k−np+1≤t≤k
Rt

)
(IN − JN )⊗

 k∑
t=k−np+1

φtφ
⊤
t

506

=

k∑
t=k−np+1

((
min
i∈V

βi,1

)
Ht +

1

n

(
min

k−np+1≤t≤k
Rt

)
(IN − JN )⊗ In

)
507

≥ npδ (mini∈V βi,1) (mink−np+1≤t≤k Rt)

2NnH̄2 (mini∈V βi,1) +N (mink−np+1≤t≤k Rt)
INn,508

=npaINn +O

(
1

ψ′

)
, a.s.,509

510

for some ψ′ > 0, where Rk =
(
min(i,j)∈E αij,1

e−∥θ∥1/bij

bij
k1−νij−γij

(
1 +O

(
1
kψ

)))
λ2(L)511

and JN is defined in (4.6).512

Then, by (4.16) and Lemma A.4, we have513

Θ̃k =


O
(

1
ka

)
, if 2h− 2a > 1;

O
(

ln k
kh−1/2

)
, if 2h− 2a = 1;

O
( √

ln k
kh−1/2

)
, if 2h− 2a < 1,

a.s.514

515
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Remark 4.9. Given νij and γij , an almost sure convergence rate of O
( √

ln k
kh−1/2

)
can516

be achieved by properly selecting αij,1, βi,1 and bij . Especially, when νij = 0, γij = 1,517

and a is sufficiently large, Algorithm 3.2 can achieve an almost sure convergence rate of518

O(
√
ln k/k), which is the best one among existing literature [10, 12, 37] even without519

data rate constraints. For comparison, He et al. [10] and Kar et al. [12] show that their520

distributed estimation algorithm achieve a almost sure convergence rate of o (k−τ ) for521

some τ ∈ [0, 12 ). Zhang and Zhang [37] prove that 1
k

∑k
t=1∥Θ̃t∥ = o

(
(b(k)k)−1/2

)
522

almost surely for their algorithm, where b(k) is the step-size satisfying the stochastic523

approximation condition
∑∞
k=0 b(k) = ∞,

∑∞
k=0 b

2(k) < ∞. The theoretical result524

of Theorem 4.8 is better than these ones. Our technique can be applied in the525

almost sure convergence rate analysis of other distributed estimation algorithms. For526

example, if the step-size b(t) in the distributed estimation algorithm (3) of [37] is527

selected as βk with sufficiently large β, then by Lemma A.4, an almost sure convergence528

rate of O(
√

ln k/k) can also be achieved.529

Remark 4.10. When νij < 1 for some (i, j) ∈ E , we have h = min(i,j)∈E
(νij

2 + γij
)

530

< 1. Therefore, the almost sure convergence rate of O(
√
ln k/k) cannot be obtained.531

This is because the communication frequency is reduced. Similar results can be seen532

in [10]. The trade-off between the convergence rate and the communication cost is533

discussed in Section 6.534

5. Communication cost. This section analyzes the communication cost of Al-535

gorithm 3.2 by calculating the average data rates defined in Definition 2.6.536

Firstly, the local average data rates of Algorithm 3.2 are calculated.537

Theorem 5.1. Under the condition of Theorem 4.1, the local average data rate538

Bij(k) = O
(

1
kνij

)
almost surely. Furthermore, if νij = 0, then Bij(k) = 1. And, if539

νij > 0 and the step-sizes are set as Theorem 4.8 and a > h− 1/2, then540

Bij(k) ≤
exp (∥θ∥1 /bij)
(1− νij)kνij

+O

( √
ln k

kh−1/2+νij

)
, a.s.541

542

Proof. If νij = 0, then Cij,k = 0. In this case, the sensor i transmits 1 bit of543

message to the sensor j at every moment almost surely, which implies Bij(k) = 1544

almost surely. Therefore, it suffices to discuss the case of νij > 0.545

By the definition of ζij(k), we have ζij(k) is Fk-measurable, and546

P{ζij(k) = 1} =F

(
xi,k − Cij,k

bij

)
+ F

(
−xi,k − Cij,k

bij

)
,547

P{ζij(k) = 0} =1− F

(
xi,k − Cij,k

bij

)
− F

(
−xi,k − Cij,k

bij

)
.548

549

Firstly, we estimate
∑k
t=1 E [ζij(t)|Ft−1]. By Theorem 4.1, xi,k = φ⊤

k θ̂i,k is uni-550

formly bounded almost surely. Therefore, when k is sufficiently large,551

E [ζij(k)|Fk−1] =F

(
xi,k − Cij,k

bij

)
+ F

(
−xi,k − Cij,k

bij

)
(5.1)552

=
exp ((xi,k − Cij,k)/bij) + exp ((−xi,k − Cij,k)/bij)

2
553

=
exp (xi,k/bij) + exp (−xi,k/bij)

2kνij
= O

(
1

kνij

)
, a.s.554

555
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Hence, E [ζij(k)|Fk−1] = O
(

1
kνij

)
for νij ≥ 0 almost surely, which implies556

k∑
t=1

E [ζij(t)|Ft−1] = O
(
k1−νij

)
, a.s.(5.2)557

558

Secondly, we estimate
∑k
t=1 ζij(t) − E [ζij(t)|Ft−1]. Since νij ≤ 1

2 under the559

condition of Theorem 4.1, 1 − νij >
1
2 − νij

4 . By E [ζij(k)|Fk−1] = O
(

1
kνij

)
almost560

surely and ζij(k) = 0 or 1, we have561

E
[
∥ζij(k)− E [ζij(k)|Fk−1]∥4

∣∣Fk−1

]
562

≤E
[
(ζij(k)− E [ζij(k)|Fk−1])

2
∣∣∣Fk−1

]
563

=E [ζij |Fk−1]− (E [ζij(k)|Fk−1])
2
= O

(
1

kνij

)
, a.s.564

565

Then, by Theorem 1.3.10 of [8], it holds that566

k∑
t=1

(ζij(t)− E [ζij(t)|Ft−1])(5.3)567

=

k∑
t=1

1

tνij/4
· tνij/4 (ζij(t)− E [ζij(t)|Ft−1]) = O

(
k

1
2−

νij
4

√
ln ln k

)
, a.s.568

569

(5.2) and (5.3) imply
∑k
t=1 ζij(t) = O(k1−νij ) almost surely. Therefore, Bij(k) =570

O
(

1
kνij

)
almost surely.571

If the step-sizes are set as Theorem 4.8 and a > h − 1/2, then by Theorem 4.8,572

θ̃i,k = O
( √

ln k
kh−1/2

)
almost surely for all i ∈ V. Then, by (5.1), we have573

E [ζij(k)|Fk−1] ≤
exp (∥θ∥1 /bij)

kνij
+O

( √
ln k

kh−1/2+νij

)
, a.s.574

575

Therefore, one can get576

Bij(k) ≤
exp (∥θ∥1 /bij)
(1− νij)kνij

+O

( √
ln k

kh−1/2+νij

)
, a.s.577

578

Remark 5.2. By Theorem 5.1, the decaying rate of Bij(k) only depends on νij .579

Therefore, the operators of sensors i and j can directly set and easily know the580

decaying rate of Bij(k) before running the algorithm.581

Remark 5.3. The noise coefficient bij influences the almost sure convergence rate582

and the average data rate. By Theorem 4.8, an almost sure convergence rate of583

O
( √

ln k
kh−1/2

)
can be achieved when 2h − 2a < 1, where a is a function of bij . By584

Theorem 5.1, the upper bound of Bij(k) is monotonically non-increasing with bij .585

Therefore, increasing bij while maintaining 2h−2a < 1 can reduce the communication586

cost without losing the almost sure convergence rate.587

Then, we can estimate the global average data rate.588

Theorem 5.4. Under the condition of Theorem 4.1, the global average data rate589

B(k) = O
(

1
kν

)
almost surely, where ν = min(i,j)∈E νij.590
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Proof. The theorem can be proved by Theorem 5.1 and B(k) =
∑

(i,j)∈E Bij(k)

2M .591

Remark 5.5. If the step-sizes are set as Theorem 4.8 and a > h− 1/2, the upper592

bound of global average data rate B(k) can also be obtained by Theorem 5.1 and593

B(k) =
∑

(i,j)∈E Bij(k)

2M .594

6. Trade-off between convergence rate and communication cost. In Sec-595

tions 4 and 5, we quantitatively demonstrate the effectiveness of Algorithm 3.2 by the596

almost sure convergence rate and the communication cost by the average data rates.597

This section establishes the trade-off between the convergence rate and the commu-598

nication cost.599

By Theorem 4.8, the convergence rate of Algorithm 3.2 is influenced by the se-600

lection of step-sizes αij,k and βi,k. The following theorem optimizes almost sure601

convergence rate by properly selecting the step-sizes.602

Theorem 6.1. In Algorithm 3.2, set νij ∈ [0, 12 ). Then, under the condition of603

Theorem 4.1, there exist step-sizes αij,k and βi,k such that θ̃i,k = O
( √

ln k
k1/2−ν̄/2

)
almost604

surely, where ν̄ = max(i,j)∈E νij.605

Proof. Set γij = 1−νij . Then, h in Theorem 4.8 equals to 1− ν̄/2. Besides, when606

αij,1 and βi,1 are sufficiently large, a in Theorem 4.8 is larger than 2h− 1. Then, the607

theorem can be proved by Theorem 4.8.608

Remark 6.2. The proof of Theorem 6.1 provides a selection method to optimize609

the convergence rate of the algorithm.610

Theorem 6.1 shows that when properly selecting the step-sizes, the key factor to611

determine the almost sure convergence rate of Algorithm 3.2 is the event-triggered612

coefficient νij . The optimal almost sure convergence rate of Algorithm 3.2 gets faster613

under smaller νij .614

On the other hand, Theorem 5.1 shows that νij is the decaying rate of the local615

average data rate for the communication channel (i, j) ∈ E . Theorem 5.4 shows that616

ν = min(i,j)∈E νij is the decaying rate of the global average data rate. Therefore, the617

average data rates of Algorithm 3.2 get smaller under large νij .618

Therefore, there is a trade-off between the convergence rate and the communi-619

cation cost. The operator of each sensor i can decrease νij of the adjacent commu-620

nication channel (i, j) ∈ E for a better convergence rate, or increase νij for a lower621

communication cost.622

7. Simulation. This section gives a numerical example to illustrate the effec-623

tiveness and the average data rates of Algorithm 3.2.624

Consider a network with 8 sensors. The communication topology is shown in625

Figure 1. aij = 1 if (i, j) ∈ E , and 0, otherwise. For the sensor i, the measurement626

matrix Hi,k =
[
1 0

]
if i is odd, and

[
0 1

]
if i is even. The observation noise627

wi,k is i.i.d. Gaussian with zero mean and standard deviation 0.1. The true value628

θ =
[
1 −1

]⊤
.629

In Algorithm 3.2, set bij = 1
2 and νij = 1

4 . The step-sizes αij,k = 5
k3/4

and630

βi,k = 5
k . Figure 2 shows the trajectory of 1

N

∑N
i=1∥θ̃i,k∥2, which demonstrates the631

convergence of Algorithm 3.2.632

To show the balance between the convergence rate and the communication cost,633

set bij =
1
2 , νij = ν = 0, 19 ,

2
9 ,

3
9 ,

4
9 , and the step-sizes αij,k = 5

k1−ν and βi,k = 5
k . The634

simulation is repeated 50 times. Denote θ̃ti,k as the estimation error of the sensor i635
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1 2 3 4

5678

Fig. 1. Communication topology.

Fig. 2. The trajectory of 1
N

∑N
i=1∥θ̃i,k∥2

at time k in the t-th run. Figure 3 depicts the log-log plot of 1
N

∑N
i=1∥θ̃ti,k∥2, which636

demonstrates that the convergence rate is faster under a smaller ν. Figure 4 shows637

the log-log plot of B(k), which illustrates that the global average data rate is smaller638

under a larger ν. Figures 3 and 4 reveal the trade-off between the convergence rate639

and the data rate.640

Fig. 3. Convergence rates with different ν Fig. 4. Average data rates with different ν

Figures 5 and 6 compare Algorithm 3.2 with the single bit diffusion algorithm641

[25] and the distributed least mean square (LMS) algorithm [35], which demonstrates642

that Algorithm 3.2 can achieve higher estimation accuracy at a lower communication643

data rate compared to the algorithms in [25, 35].644

8. Conclusion. This paper considers the distributed estimation under low com-645

munication cost, which is described by the average data rates. We propose a novel646

distributed estimation algorithm, where the SC consensus protocol [14] is used to647

fuse neighborhood information, and a new stochastic event-triggered mechanism is648
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Fig. 5. The trajectories of ln
(

1
50N

∑50
t=1

∑N
i=1∥θ̃ti,k∥

2
)

or different algorithms

Fig. 6. Average data rates for different algorithms

designed to reduce the communication frequency. The algorithm has advantages both649

in the effectiveness and communication cost. For the effectiveness, the estimates of the650

algorithm are proved to converge to the true value in the almost sure and mean square651

sense, and polynomial almost sure convergence rate is also obtained. For the commu-652

nication cost, the local and global average data rates are proved to decay to zero at653

polynomial rates. Besides, the trade-off between convergence rate and communication654

cost is established through event-triggered coefficients. A better convergence rate can655

be achieved by decreasing event-triggered coefficients, while lower communication cost656

can be achieved by increasing event-triggered coefficients.657

There are interesting issues for future works. For example, how to extend the re-658

sults to the cases with more complex communication graphs, such as directed graphs659

and switching graphs? Besides, Gan and Liu [7] consider the distributed order esti-660

mation, and Xie and Guo [36] investigate distributed adaptive filtering. These issues661

also suffer the communication cost problems. Then, how to apply our technique to662

these works to save the communication cost?663

Appendix A. Lemmas.664

Lemma A.1. Let f(·) be the density function of Lap(0, 1). Given Ck = νb ln k665

with ν ≥ 0 and b > 0, and a compact set X , we have infx∈X ,k∈N
kν

b f((x−Ck)/b) > 0.666

Proof. If ν = 0, then Ck = 0 for all k. Therefore, infx∈X ,k∈N
1
bf(x/b) > 0 by the667

compactness of X .668

If ν > 0, then limk→∞ Ck = ∞, which together with the compactness of X implies669
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that there exists k0 such that x− Ck < 0 for all x ∈ X and k ≥ k0. Hence,670

inf
x∈X ,k≥k0

kν

b
f

(
x− Ck
b

)
= inf
x∈X ,k≥k0

kν

2b
e(x−νb ln k)/b =

1

2b
eminX/b > 0.671

672

Besides by the compactness of X , one can get infx∈X
kν

b f((x − Ck)/b) > 0 for all673

k < k0. The lemma is proved.674

Lemma A.2. If positive sequence {zk} satisfies
∑∞
k=1 zk = ∞ and zk+1 = O(zk),675

then for any l ∈ {1, . . . , n},
∑∞
q=1 minn(q−1)+l<t≤nq+l zt = ∞.676

Proof. Set z̄ = sup
{
1, zk+1

zk
, k ∈ N

}
<∞. Then, zk ≥ zk+1

z̄ . Therefore,677

∞∑
q=1

min
n(q−1)+l<t≤nq+l

zt ≥
∞∑
q=1

max
nq+l<t≤n(q+1)+l

zt
z̄2n

≥ 1

nz̄2n

∞∑
k=l+n+1

zk = ∞.678

679

Lemma A.3. a) ln(1 + x+ y) ≤ ln(1 + x) + ln(1 + y) for all x, y ≥ 0;680

b) ln(1 + x)− ln(1 + y) ≤ x−y
1+y for all x, y ≥ 0;681

c) ln(1+x)−ln(1+y)
x−y ≤ 1 for all x, y ≥ 0;682

d) supx>0
ln(1+x)
xp <∞ for all p ∈ (0, 1].683

Proof. a), b) and c) can be proved by ln(1 + x + y) ≤ ln ((1 + x)(1 + y)) =684

ln(1 + x) + ln(1 + y), Proposition 5.4.6 of [41] and the Lagrange mean value theorem685

[41], respectively. For d), if p = 1, then we have supx≥0
ln(1+x)

x ≤ 1. If p ∈ (0, 1),686

then x1 > x2 > 0 such that ln(1 + x) < xp for all x ∈ (0, x2) ∪ (x1,∞). Therefore,687

supx≥0
ln(1+x)
xp ≤ max

{
supx∈[x2,x1]

ln(1+x)
xp , 1

}
<∞.688

Lemma A.4. Assume that689

i) {Fk} is a σ-algebra sequence satisfying Fk−1 ⊆ Fk for all k;690

ii) {Uk} is a matrix sequence satisfying that Uk is Fk−1-measurable, Uk = O (kµ)691

for some 0 ≤ µ < 1
2 almost surely, Uk + U⊤k is positive semi-definite for all k,692

and693

(A.1)
1

2p

k∑
t=k−p+1

Ut + U⊤t ≥ aIn694

for some p ∈ N, a > 0 and all k ∈ N almost surely;695

iii) {Wk,Fk} is a martingale difference sequence such that E [∥Wk∥ρ|Fk−1]= O
(

1
kρh

)
696

almost surely for some ρ > 2 and 1
2 < h ≤ min{1, 3+2h−2µ

4 };697

iv) {Xk,Fk} is a sequence of adaptive random variables;698

v) There exists c > 1 almost surely such that699

(A.2) Xk =

(
In − Uk

k
+O

(
1

kc

))
Xk−1 + Wk.700

Then,701

Xk =


O
(

1
ka

)
, if 2h− 2a > 1;

O
(

ln k
kh−1/2

)
, if 2h− 2a = 1;

O
( √

ln k
kh−1/2

)
, if 2h− 2a < 1,

a.s.702

703
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Proof. Denote Ūt =
Ut+U⊤t

2 . Then, by (A.2),704

E
[
∥Xk∥2

∣∣∣Fk−1

]
705

=

(
1 +O

(
1

kmin{c,2−2µ}

))
∥Xk−1∥2 −

2

k
X⊤k−1ŪkXk−1 +O

(
1

k2b

)
, a.s.706

707

Hence, by Theorem 1.3.2 of [8], we have ∥Xk∥2 converges to a finite value almost708

surely, which implies the almost sure boundedness of Xk.709

We estimate the almost sure convergence rate of Xk in the following two cases.710

Case 1: 2h− 2a > 1. In this case, we have711

E
[
(k + 1)2a ∥Xk∥2

∣∣∣Fk−1

]
(A.3)712

≤
(
1 +

2a

k
+O

(
1

kmin{c,2−2µ}

))
k2a ∥Xk−1∥2 −

2

k1−2a
X⊤k−1ŪkXk−1 +O

(
1

k2h−2a

)
713

=

(
1 +O

(
1

kmin{c,2−2µ}

))
k2a ∥Xk−1∥2 +

2a

k1−2a
∥Xk−1∥2 −

2

k1−2a
X⊤k−1ŪkXk−1714

+O

(
1

k2h−2a

)
, a.s.715

716

Next, we will prove that supk∈N
∑k
t=1

(
2a

t1−2a ∥Xt−1∥2 − 2
t1−2a X

⊤
t−1ŪtXt−1

)
<∞ almost717

surely. Note that 1− 2a > 2− 2h ≥ 0. Then, by (A.1), one can get718

k∑
t=1

(
2a

t1−2a
∥Xt−1∥2 −

2

t1−2a
X⊤t−1ŪtXt−1

)
(A.4)719

≤
⌊ kp ⌋−1∑
r=0

pr+p∑
t=pr+1

(
2a

t1−2a
∥Xt−1∥2 −

2

t1−2a
X⊤t−1ŪtXt−1

)
+O

(
1

k1−2a

)
720

≤
⌊ kp ⌋−1∑
r=0

2

(pr + p)1−2a

pr+p∑
t=pr+1

(
a ∥Xt−1∥2 − X⊤t−1ŪtXt−1

)
+

⌊ kp ⌋−1∑
r=0

O

(
1

r2−2a

)
+O (1)721

≤
⌊ kp ⌋−1∑
r=0

2

(pr + p)1−2a

pr+p∑
t=pr+1

(
X⊤pr+p−1ŪtXpr+p−1 − X⊤t−1ŪtXt−1

)
722

+

⌊ kp ⌋−1∑
r=0

2a

(pr + p)1−2a

pr+p∑
t=pr+1

(
∥Xt−1∥2 − ∥Xpr+p−1∥2

)
+O (1) .723

724

Besides,725

pr+p∑
t=pr+1

(
X⊤pr+p−1ŪtXpr+p−1 − X⊤t−1ŪtXt−1

)
(A.5)726

=

pr+p∑
t=pr+1

pr+p−1∑
l=t

(
X⊤l ŪtXl − X⊤l−1ŪtXl−1

)
727

=

pr+p∑
t=pr+1

pr+p−1∑
l=t

(
2W⊤l Ūt

(
In − Ūl

l
+O

(
1

lc

))
Xl−1 + W⊤l ŪtWl

)
+O

(
r2µ−1

)
, a.s.728

729

This manuscript is for review purposes only.



SIGNAL-COMPARISON-BASED DISTRIBUTED ESTIMATION 23

When t ∈ {pq + 1, . . . , pq + l} and l = {t, . . . , pr + p− 1}, it holds that730

4

(pr + p)1−2alb
Ūt

(
In − Ūl

l
+O

(
1

lc

))
Xl−1 = O

(
1

r1+b−2a−µ

)
.731

732

Note that 1+h− 2a−µ ≥ 2h− 2a−µ > 1
2 . Then, by Theorem 1.3.10 of [8], we have733

⌊ kp ⌋−1∑
r=0

pr+p∑
t=pr+1

pr+p−1∑
l=t

(lbWl)
⊤
(

4

(pr + p)1−2alb
Ūt

(
In − Ūl

l
+O

(
1

lc

))
Xl−1

)
= O(1), a.s.

(A.6)

734

735

Additionally, by 1 + 2b− 2a− µ > 2− µ > 1 and Theorem 1.3.9 of [8] with α = 1,736

⌊ kp ⌋−1∑
r=0

pr+p∑
t=pr+1

2

(pr + p)1−2a

pr+p−1∑
l=t

W⊤l ŪtWl737

=

⌊ kp ⌋−1∑
r=0

pr+p∑
t=pr+1

pr+p−1∑
l=t

2

(pr + p)1−2at2b−µ
· t2b−µ

(
W⊤l ŪtWl − E

[
W⊤l ŪtWl

∣∣Fl−1

])
738

+

⌊ kp ⌋−1∑
r=0

pr+p∑
t=pr+1

2

(pr + p)1−2a

pr+p−1∑
l=t

E
[
W⊤l ŪtWl

∣∣Fl−1

]
= O(1), a.s.,739

740

which together with (A.5) and (A.6) implies that741

⌊ kp ⌋−1∑
r=0

2

(pr + p)1−2a

pr+p∑
t=pr+1

(
X⊤pr+p−1ŪtXpr+p−1 − X⊤t−1ŪtXt−1

)
= O(1), a.s.742

743

Similarly, one can get744

⌊ kp ⌋−1∑
r=0

2a

(pr + p)1−2a

pr+p∑
t=pr+1

(
∥Xt−1∥2 − ∥Xpr+p−1∥2

)
= O(1), a.s.745

746

Then, by (A.4), we have747

k∑
t=1

(
2a

t1−2a
∥Xt−1∥2 −

2

t1−2a
X⊤t−1ŪtXt−1

)
<∞, a.s.,(A.7)748

749

Given S0 > 0, define Sk = S0 −
∑k
t=1

(
2a

t1−2a ∥Xt−1∥2 − 2
t1−2a X

⊤
t−1ŪtXt−1

)
and750

Vk = (k + 1)2a ∥Xk∥2 + Sk. Hence by (A.3), we have751

E [Vk|Fk−1] ≤
(
1 +O

(
1

kmin{c,2−2µ}

))
Vk−1 +O

(
1

k2h−2a

)
, a.s.752

753

Then, define k0 = inf{k : Sk < 0}. We have754

E
[
Vmin{k,k0}

∣∣Fk−1

]
755

≤Vk0I{k0≤k} +
(
1 +O

(
1

kmin{c,2−2µ}

))
Vk−1I{k0>k} +O

(
1

k2h−2a

)
756

≤
(
1 +O

(
1

kmin{c,2−2µ}

))
Vmin{k−1,k0} +O

(
1

k2h−2a

)
.757

758
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By Theorem 1.3.2 of [8], Vmin{k,k0} converges to a finite value almost surely. Note759

that Vk = Vmin{k,k0} in the set760

{k0 = ∞} = {inf
k
Sk ≥ 0} =

{
k∑
t=1

(
2a

t1−2a
∥Xt−1∥2 −

2

t1−2a
X⊤t−1ŪtXt−1

)
< S0

}
.761

762

Then, by the arbitrariness of S0 and (A.7), Vk converges to a finite value almost surely,763

which implies the almost sure boundedness of (k + 1)2a ∥Xk∥2. Hence, one can get764

Xk = O
(

1
ka

)
almost surely.765

Case 2: 2h− 2a ≤ 1. In this case, we have766

E
[
(k + 1)2h−1

(ln(k + 1))2
∥Xk∥2

∣∣∣∣Fk−1

]
(A.8)767

≤
(
1 +

2h− 1

k
+O

(
1

kmin{c,2−2µ}

))
k2h−1

(ln k)2
∥Xk−1∥2768

− 2

k2−2h(ln k)2
X⊤k−1ŪkXk−1 +O

(
1

k(ln k)2

)
769

≤
(
1 +O

(
1

kmin{c,2−2µ}

))
k2h−1

(ln k)2
∥Xk−1∥2 +

2a

k2−2h(ln k)2
∥Xk−1∥2770

− 2

k2−2h(ln k)2
X⊤k−1ŪkXk−1 +O

(
1

k(ln k)2

)
, a.s.771

772

Then, similar to the case of 2h− 2a > 1, we have Xk = O
(

ln k
kh−1/2

)
almost surely.773

We further promote the almost sure convergence rate for the case of 2h− 2a < 1.774

Since Xk = O
(

ln k
kh−1/2

)
almost surely, one can get775

(k + 1)2h−1 ∥Xk∥2(A.9)776

≤ k2h−1 ∥Xk−1∥2 + 2(k + 1)2h−1W⊤k

(
In − Ūk

k
+O

(
1

kc

))
Xk−1 +

2h− 1

k2−2h
∥Xk−1∥2777

− 2

k2−2h
X⊤k−1ŪkXk−1 + (k + 1)2h−1

(
∥Wk∥2 − E

[
∥Wk∥2

∣∣Fk−1

])
+O

(
1

k

)
.778

779

By Theorem 1.3.10 of [8], it holds that780

k∑
t=1

2(t+ 1)2h−1W⊤t

(
In − Ūt

t
+O

(
1

tc

))
Xt−1781

=

k∑
t=1

((t+ 1)hWt)
⊤
(
2(t+ 1)h−1

(
In − Ūt

t
+O

(
1

tc

))
Xt−1

)
782

=O(1) + o

(
k∑
t=1

1

t2−2h
∥Xt∥2

)
, a.s.783

784

By Theorem 1.3.9 of [8] with α = 1, one can get785

k∑
t=1

(t+ 1)2h−1
(
∥Wt∥2 − E

[
∥Wt∥2

∣∣Fk−1

])
786

=

k∑
t=1

(t+ 1)2h
(
∥Wt∥2 − E

[
∥Wt∥2

∣∣Fk−1

])
· 1

t+ 1
= O(ln k), a.s.787

788
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Similar to (A.7), we have789

k∑
t=1

(
2a

t2−2h
∥Xt−1∥2 −

2

t2−2h
X⊤t−1ŪtXt−1

)
≤ o(ln k), a.s.790

791

Hence, by (A.9),792

(k + 1)2h−1 ∥Xk∥2793

≤∥X0∥2 +
k∑
t=1

2(t+ 1)2h−1W⊤t

(
In − Ūt

t
+O

(
1

tc

))
Xt−1794

−
k∑
t=1

1 + 2a− 2h

t2−2h
∥Xt−1∥2 +

k∑
t=1

(
2a

t2−2h
∥Xt−1∥2 −

2

t2−2h
X⊤t−1ŪtXt−1

)
795

+
k∑
t=1

(t+ 1)2h−1
(
∥Wt∥2 − E

[
∥Wt∥2

∣∣Fk−1

])
+O(ln k)796

≤o

(
k∑
t=1

1

t2−2h
∥Xt∥2

)
− (1 + 2a− 2h)

k∑
t=1

1

t2−2h
∥Xt∥2 +O(ln k) = O(ln k), a.s.,797

798

which implies Xk = O
( √

ln k
kh−1/2

)
. The lemma is thereby proved.799
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